

Emerging Zoonoses: Nipah and Hendra viruses

Pierre E. Rollin, MD Special Pathogens Branch Centers for Disease Control and Prevention

CDC

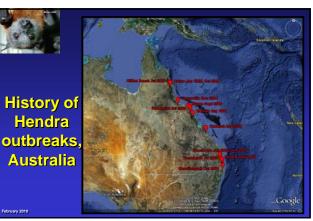
Hendra and Nipah viruses

- · History of previous outbreaks
- Reservoirs of viruses
- Clinical features in human
- Diagnosis and Treatment
- Transmission and Epidemiology
- Disease in horses and pigs
- Prevention and Control

	History of Hendra outbreaks - 1994 outbreak	
	September QDPI advised Advised October	
	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4	
Property CANNON HILL (Rail)		
Property HENDRA (Rail)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Property NEXT DOOR	रेक के	
Property 50 Km away	▶	
Human contacts February 2010	Vic Rail 1 200 Dead	

any 2010

In 1995, a 36yo farmer died of severe encephalitis in Mackay, Queensland.


Two horses died a year before of unknown

infection (one of pneumonia, the other of acute neurological illness) retrospectively Hendraconfirmed.

 He had assist at their post-mortem examination and had retrospective serologic evidence of Hendra infection at that time.

	HORSE	HUMAN	
Mackay	2	1*	August 1994
Brisbane (Hendra)	20	<u>2</u> *	September 1994
Cairns (Trinity Beach)	1		January 1999
Cairns (Gordonvale)	1	1	October 2004
Townsville	1	-	December 2004
Peachester	1	-	June 2006
Murwillimbah	1		October 2006
Peachester	1	-	June 2007
Cairns (Clifton Beach)	1	-	July 2007
Brisbane (Redlands)	5	<u>2</u> *	June 2008
Proserpine	3	-	July 2008
Cawarral	4	1*	July 2009
Bowen	2		Aug 2009
	43	7 (4 deaths)	

Outbreak of viral encephalitis in Malaysia:

- Disease in humans (mostly pig farmers) with cases described as beginning in October 1998
- · Parallel disease in pigs, but not initially reported nor well described

Japanese encephalitis diagnosed as the etiology of the disease in

- humans and pigs March 1999. CSF from patients from Negeri Sembelan: yields cytopathic agent. EM--paramyxovirus like morphology on thin section. 12/13 patients positive by Hendra IgM capture. IHC on frozen brain
- positive for Hendra RT-PCR is positive with degenerate paramyxovirus P-protein primers, sequence is Hendra-like but distinct

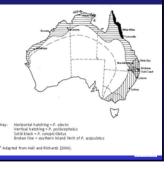
CDC

History of Nipah outbreaks

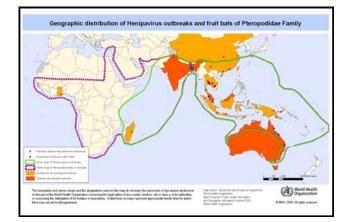
- · In 1999, Singapore's importation of infected pigs from Malaysia. 22 human cases and one death. Of these, 12 $(54\pm6\%)$ were symptomatic; 9 presented with encephalitis, 2 with pneumonia and 1 with both encephalitis and pneumonia. Stopped with pig import ban from Malaysia.
- · Since 2001, 10 outbreaks in Bangladesh, 2 in West Bengal,
- · Since discovery, 480 human cases including 251 deaths

Hendra and Nipah viruses

- · History of previous outbreaks
- · Reservoirs of viruses
- Clinical features in human
- Diagnosis and Treatment
- Transmission and Epidemiology
- Disease in horses and pigs
- Prevention and Control


CDC

2010


Reservoirs of viruses Hendra

- fruit bats identified as the natural host in 1996.
- antibodies in all 4 species (20-50%).
- antibodies across the geographic range. no attributed clinical
- disease in flying foxes.
- antibodies in archive samples.

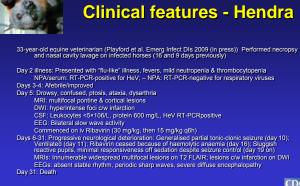
			s of viruses Nalaysia
Species	# Tested	Nipah SNT	
Pteropus vampyrus	57 (28)	Pos 5	
Pteropus hypomalenus	42		
Cynopterus brachyolitis	74		
Cynopterus horsfieldi	9		
Rousettus amplexicaudatus	16	0	
Eonycteris spelaea	74	0	Total of ~310 bats
Macroglosus sobrinus	4	0	KB Chua has isolated
Balionycterus maculata	4	0	
Megaerops ecaudatus	1	0	Nipah virus from Pteropus hypomalenu
Scotophuilus kuhli	58	0*	
Rhinolophus spp.	7	0	
Taphozous melanopogon	7	0	
Hippeosiderus bicolor	1	0	
* Toxic			

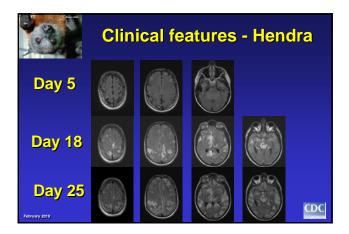
- · History of previous outbreaks
- Reservoirs of viruses
- Clinical features in human
- Diagnosis and Treatment
- Transmission and Epidemiology
- Disease in horses and pigs
- Prevention and Control

Clinical features - Hendra

- · All have unprotected contact with infected horses
- Incubation period 5-14 days
- All cases symptomatic (4/7 died)
- · All start with "flu-like" syndrome: fever, headache, myalgias, sore-throat, dry cough
- · Neurological manifestations indicative of bad prognosis
- · Multi-organ failure and death

CDC

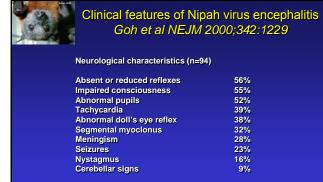

ary 2010


Clinical features - Hendra

Mild case in a veterinarian (Hanna et al. Med J Aust 2006;562-4)

- Extensive exposure to horse's blood & body fluids during necropsy on horse with acute febrile illness with respiratory and pre-terminal neurological manifestations
- Onset 7 days later: febrile illness with cough, pharyngitis, cervical lymphadenopathy
- Recovered ~8 days later
- Seroconversion to HeV on day 14 of illness
- No clinical evidence of relapse

CDC

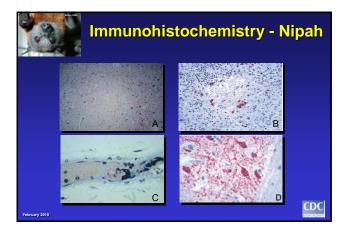

Clinical features – Nipah Malaysia

- Febrile illness 4-7 days duration
- Early respiratory signs?
- Headache, drowsiness, slurred speech, loss of cognition, coma
- Neurological signs suggest mid-brain, pons lesions
- Pathology: diffuse focal lesions of CNS
- Mortality ~36% of those hospitalized (105/285)
- There were subclinical infections

Admissic	on Laborat	tory Value	es
Test	Median	Range	(Normal Range)
WBC (x1000/mm3)	5.2	1.2 – 14.7	(4.5-11.0)
Platelet (x1000/mm3)	141	8 - 357	(150-400)
Creatinine (mg/dL)	0.9	0.4- 5.0	(0.7-1.5)
CSF WBC (# /cu mm)	2	0-1250	(0-10)
CSF protein (mg/dL)	67	15 - 335	(15-45)

	Nipah virus encephalitis IM 2000;342:1229
Clinical features at presen	tation (n=94)
Fever	97%
Headache	65%
Dizziness	36%
Vomiting	27%
Reduced consciousness	21%
Nonproductive cough	14%
Myalgia	12%
Focal neurological signs	10%
	CDC

Estes 275			
Factors asso Goh et al. N		· · · · ·	
FACTOR	DEATH	SURVIVAL	P VALUE
	(N=30)	(N=64)	
Mean age — yr	40.9	35.2	0.02
Vomiting — no. (%)	12 (40)	13 (20)	0.04
Mean lowest Glasgow Coma scores	6.8	12.8	0.005
Segmental myoclonus — no. (%)	20 (67)	10 (16)	<0.001
Abnormal doll's-eye reflex — no. (%)	26 (87)	10 (16)	<0.001
Abnormal pupils — no. (%)	29 (97)	20 (31)	<0.001
Hypertension — no. (%)	23 (77)	14 (22)	< 0.001
Tachycardia — no. (%)	28 (93)	8 (12)	< 0.001
Absent or reduced reflexes — no. (%)	22 (73)	31 (48)	0.02
Seizures — no. (%)	12 (40)	10 (16)	0.01
Mean AST level at admission — U/liter	87	34.4	0.001
Mean ALT level at admission — U/liter	94.2	53.6	0.006
Mean platelet count at admission	151,000	197,000	0.005
— per mm3			CDC
February 2010			CDC



Relapsed and late-onset Nipah encephalitis Chong et al Neurol J Southeast Asia 2003; 8: 109

- Relapsed encephalitis was seen in 15 (9%) of acute encephalitis survivors
- Late-onset encephalitis was seen in 10 (3.4%) of those with previous non-encephalitic or asymptomatic Nipah infection
- Mean duration from initial infection: 13 months (up to 4 $\frac{1}{2}$ years)

3/25 patients had a second neurological episode

CDC

Long-term neurological and functional outcome in Nipah virus infection Sejvar JJ et al. Ann Neurol 2007

Of the survivors of acute Nipah infection in Bangladesh # **21/22** had **disabling fatigue**, with medium duration

- of 5 months;
- **# 3** patients continued to have **profound fatigue** 2 years after infection
- # >50% of those <16 years had Behavioral abnormalities

Hendra and Nipah viruses History of previous outbreaks

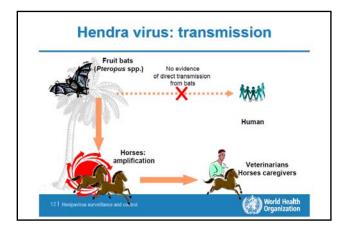
- Reservoirs of viruses
- Clinical features in human
- Diagnosis and Treatment
- Transmission and Epidemiology
- Disease in horses and pigs
- Prevention and Control

CDC

3	La	borator "BSL-4		
Sample	PCR	Isolation	IHC	Antibody
N/T Swab	+*	+*	ND	ND
Urine	+*	+*	ND	ND
Blood	+/-	-	ND	+
CSF	+	+	ND	+
Tissues	+	+	+	ND

* Positivity decrease when Ab appears

CDC

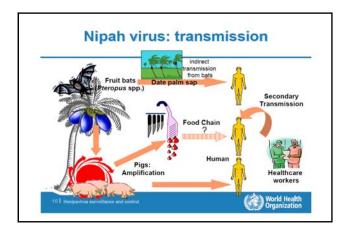

Treatment Potential prophylactic/therapeutic modalities

- Ribavirin Nipah/Hendra
- Chloroquine
- Passive immunotherapy

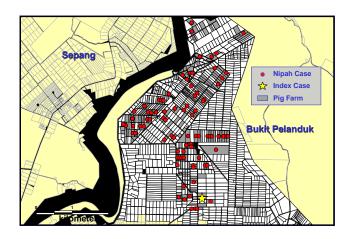
Hendra and Nipah viruses History of previous outbreaks Reservoirs of viruses Clinical features in human Diagnosis and Treatment Transmission and Epidemiology Disease in horses and pigs

Prevention and Control

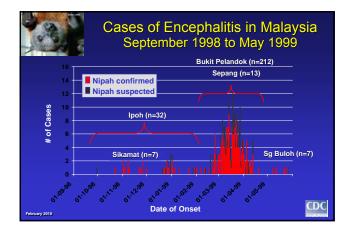
CDC



Probability of spillover from any given colony depends on


- the proportion of susceptible flying foxes,
- the colony size,
- the presence of infection ..

plus


- the number and density of horses,
- the number and density of flying foxes,
- management of the horses,
- the virus strain/virus dose/route of infection?

National Swine Surveillance Limited period (90 days)

- All premises sampled
 - Based on high morbidity data
 - 15 sows
 - 2 samples (at least 21 days apart)
- Abattoir sampling
- Active disease discovery
- Human case discovery
- Cull infected premises

CDC

CDC

Results of Phase II Nat. Swine Surveillance

A total of 889 farms were tested

50 farms were found to have evidence of Nipah infection by the prearranged criteria

Farms culled

ny 2010

Spread

- Movement of infected swine
- Transmission in swine:
 - Very transmissible in modern husbandry setting: crowding
- Virus maintenance in swine
 - Continuous transmission?
 - Persistent infections?

Investigations Nipah Malaysia

Risk factors:

- · Direct live infected pig contact
- · Non-encephalitic/non-clinical infections
- Virus molecular epidemiology
 - · Pigs and human cases: identical sequence
- Nosocomial infections? No
- Natural reservoir?
- · Other species:
 - Dogs, cats, horses: but non-spreading
 - · Rodents, birds, insectivores: none or very low CDC

1		sk factors & tra Nipah in Baı	
Year	Districts	Transmission and risk factors	Probability
2001	Meherpur	Caring or living with a case	OR 7.9; 95% CI 2.2-27.7
2003	Naogaon	Close proximity with pig herds	OR 6.1; 95% CI 1.4-25.9)
2004	Rajbari	Climbing trees	OR 8.2, 95% CI 1.25, +Inf
2004	Faridpur	Touching a Nipah patient	RR 15.0, 95% CI 4.0, 65
2005	Tangail	Drinking raw date palm juice	OR 7.0, 95% CI: 1.6-31, p<0.01
2007	Thakurgaon	Remaining in the same room with Nipah patient	OR 57.0, 95% CI: 4.4-7.44 p<0.001
2007	Kushtia	Person to person	p<0.05
2008	Manikganj and Rajbari	Drinking raw date palm juice	Adjusted OR 18, 95% CI: 2.2 - ∞, p=<0.005
		Rahman et al, 2009	

Bangladesh Epidemiology

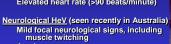
- Person to person transmission 5 of 11 clusters, involved ranging from 1 to 5 generations Study conducted to reduce the risk of Nipah virus transmission Nipah virus isolated from saliva and urine
 Nipah infection associated with close contact of patients

Superspreaders

Palm sep transmission Understand date palm sep collection • Explore existing techniques to interrupt bats in accessing date palm sep

Hendra and Nipah viruses

- History of previous outbreaks
- Reservoirs of viruses
- Clinical features in human
- Diagnosis and Treatment
- Transmission and Epidemiology
- Disease in horses and pigs
 Prevention and Control


CDC

Hendra disease in horses

Respiratory HeV

Peracute or acute illness Frothy nasal discharge Facial oedema Body temperature > 40 C Elevated heart rate (>90 beats/minute)

Mild focal neurological signs, includi muscle twitching Ataxia Head tilt, facial nerve paralysis

Elevated body temperature Neurological signs may resolve

2010

Nipah disease in swine

- · Febrile respiratory disease predominates
 - Labored or forced breathing
 - "One-mile" cough
- CNS disease much rarer than in man
- Sudden death/neurological disease in sows and boars, some abortions reported
- Mortality 1-3%, morbidity: ~100%
- Post-mortem changes primarily in lung, some CNS
 CDC

Hendra and Nipah viruses

- History of previous outbreaks
- Reservoirs of viruses
- Clinical features in human
- Diagnosis and Treatment
- Transmission and Epidemiology
- Disease in horses and pigs
 Prevention and Control

CDC

1. Control in domestic animals

- Routine cleaning & disinfection of pig farm/horse stable is expected to be effective in preventing infection
- Reducing the risk of bat-to-domestic animal transmission: bat proof buildings, bat exclusion strategy, fruit tree removal...
- Outbreak suspected: Quarantine animal premises ± euthanasia or culling of infected animal(s) Restrict/ ban animals movements
- Establish active animal health surveillance system for early warning for veterinary and human public health authorities.

CDC

2010

2. Reducing risk of infection in people

- Reduce risk of bats-to-human transmission: Protect collection process of date palm juice (bamboo) Wash & peel fruits thoroughly
- Reduce risk of human-to-human transmission: Avoid or minimize physical contact with ill patient Hand hygiene + use of personal protective equipment (PPE)
 Reduce risk of domestic animal-to-human transmission:
- Avoid or minimize contact with ill or dead pig, horse Hand hygiene + use of personal protective equipment (PPE) Particularly important in veterinary practices (care, necropsies)

Exposure to bats, Exposure to sick animals, Home care, Funerals? Guidelines/trainings for specialized categories Health care workers Veterinarians

Farmers Wildlife experts