Emerging Zoonoses: Nipah and Hendra viruses

Pierre E. Rollin, MD
Special Pathogens Branch
Centers for Disease Control and Prevention

Histogram of the phosphoprotein gene of members of the subfamily Paramyxovirinae

Hendra and Nipah viruses

• History of previous outbreaks
• Reservoirs of viruses
• Clinical features in human
• Diagnosis and Treatment
• Transmission and Epidemiology
• Disease in horses and pigs
• Prevention and Control
In 1995, a 36yo farmer died of severe encephalitis in Mackay, Queensland.

Two horses died a year before of unknown infection (one of pneumonia, the other of acute neurological illness) retrospectively Hendra-confirmed.

He had assist at their post-mortem examination and had retrospective serologic evidence of Hendra infection at that time.
History of Hendra outbreaks, Australia

Eaton 2005
February 2010

History of Nipah outbreaks - Malaysia - 1999

Outbreak of viral encephalitis in Malaysia:
• Disease in humans (mostly pig farmers) with cases described as beginning in October 1998
• Parallel disease in pigs, but not initially reported nor well described
• Japanese encephalitis diagnosed as the etiology of the disease in humans and pigs
• March 1999. CSF from patients from Negeri Sembilan: yields cytopathic agent. EM–paramyxovirus like morphology on thin section. 12/13 patients positive by Hendra IgM capture. IHC on frozen brain positive for Hendra
• RT-PCR is positive with degenerate paramyxovirus P-protein primers, sequence is Hendra-like but distinct

History of Nipah outbreaks

• In 1999, Singapore’s importation of infected pigs from Malaysia. 22 human cases and one death. Of these, 12 (54±6%) were symptomatic, 9 presented with encephalitis, 2 with pneumonia and 1 with both encephalitis and pneumonia. Stopped with pig import ban from Malaysia.
• Since 2001, 10 outbreaks in Bangladesh, 2 in West Bengal, India.
• Since discovery, 480 human cases including 251 deaths

Eaton 2005
February 2010
Hendra and Nipah viruses

- History of previous outbreaks
- Reservoirs of viruses
- Clinical features in human
- Diagnosis and Treatment
- Transmission and Epidemiology
- Disease in horses and pigs
- Prevention and Control

Reservoirs of viruses

Hendra

- fruit bats identified as the natural host in 1996.
- antibodies in all 4 species (20-50%).
- antibodies across the geographic range.
- no attributed clinical disease in flying foxes.
- antibodies in archive samples.
Reservoirs of viruses
Nipah Malaysia

<table>
<thead>
<tr>
<th>Species</th>
<th>Tested</th>
<th>Nipah SNT Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pteropus vampyrus</td>
<td>57</td>
<td>28</td>
</tr>
<tr>
<td>Pteropus hypomalenus</td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td>Cynopterus brachyolitis</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>Cynopterus horsfieldi</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Rousettus amplexicaudatus</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Eonycteris spelaea</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>Macroglossus sobrinus</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Balionycteris maculata</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Megaerops ecaudatus</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Scotophuilus kuhli</td>
<td>58</td>
<td>0*</td>
</tr>
<tr>
<td>Rhinolophus spp.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Taphozous melanopogon</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Hippeosiderus bicolor</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Total of ~310 bats
KB Chua has isolated Nipah virus from Pteropus hypomalenus

Hendra and Nipah viruses

- History of previous outbreaks
- Reservoirs of viruses
- Clinical features in human
- Diagnosis and Treatment
- Transmission and Epidemiology
- Disease in horses and pigs
- Prevention and Control
Clinical features - Hendra

- All have unprotected contact with infected horses
- Incubation period 5-14 days
- All cases symptomatic (4/7 died)
- All start with “flu-like” syndrome: fever, headache, myalgias, sore-throat, dry cough
- Neurological manifestations indicative of bad prognosis
- Multi-organ failure and death

Mild case in a veterinarian (Hanna et al. Med J Aust 2006;562-4)
- Extensive exposure to horse’s blood & body fluids during necropsy on horse with acute febrile illness with respiratory and pre-terminal neurological manifestations
- Onset 7 days later: febrile illness with cough, pharyngitis, cervical lymphadenopathy
- Recovered ~8 days later
- Seroconversion to HeV on day 14 of illness
- No clinical evidence of relapse

33-year-old equine veterinarian (Playford et al. Emerg Infect Dis 2009 (in press))
- Performed necropsy and nasal cavity lavage on infected horses (16 and 9 days previously)
- Day 2 illness: Presented with “flu-like” illness, fevers, mild neutropenia & thrombocytopenia
- NPA/serum: RT-PCR-positive for HeV; – NPA: RT-PCR-negative for respiratory viruses
- Day 3–4: Adrenocortical
- Day 5: Drowsy, confused, ptosis, ataxia, dysarthria
- MRI: multifocal pontine & cortical lesions
- DWI: hyperintense foci c/w infarction
- CSF: Leukocytes <5×10^6/L, protein 600 mg/L, HeV RT-PCR-positive
- EEG: Bilateral slow wave activity
- Commenced on iv Ribavirin (30 mg/kg, then 15 mg/kg q6h)
- Days 6–31: Progressive neurological deterioration: Generalised partial tonic-clonic seizure (day 10); Ventilated (day 11); Ribavirin ceased because of haemolytic anaemia (day 16); Sluggish reactive pupils, minimal responsiveness off sedation despite seizure control (day 19 on)
- MRIs: Innumerable widespread multifocal lesions on T2 FLAIR; lesions c/w infarction on DWI
- EEGs: absent stable rhythm, periodic sharp waves, severe diffuse encephalopathy
- Day 31: Death
Clinical features - Hendra

Day 5

Day 18

Day 25

Clinical features – Nipah
Malaysia

- Febrile illness - 4-7 days duration
- Early respiratory signs?
- Headache, drowsiness, slurred speech, loss of cognition, coma
- Neurological signs suggest mid-brain, pons lesions
- Pathology: diffuse focal lesions of CNS
- Mortality ~36% of those hospitalized (105/285)
- There were subclinical infections

Admission Laboratory Values

<table>
<thead>
<tr>
<th>Test</th>
<th>Median</th>
<th>Range</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (x1000/mm3)</td>
<td>5.2</td>
<td>1.2 – 14.7</td>
<td>(4.5-11.0)</td>
</tr>
<tr>
<td>Platelet (x1000/mm3)</td>
<td>141</td>
<td>8 - 357</td>
<td>(150-400)</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>0.9</td>
<td>0.4 - 5.0</td>
<td>(0.7-1.5)</td>
</tr>
<tr>
<td>CSF WBC (# /cu mm)</td>
<td>2</td>
<td>0-1250</td>
<td>(0-10)</td>
</tr>
<tr>
<td>CSF protein (mg/dL)</td>
<td>67</td>
<td>15 - 335</td>
<td>(15-45)</td>
</tr>
</tbody>
</table>
Clinical features of Nipah virus encephalitis
Goh et al NEJM 2000;342:1229

Clinical features at presentation (n=94)

- Fever 97%
- Headache 65%
- Dizziness 36%
- Vomiting 27%
- Reduced consciousness 21%
- Nonproductive cough 14%
- Myalgia 12%
- Focal neurological signs 10%

Neurological characteristics (n=94)

- Absent or reduced reflexes 56%
- Impaired consciousness 55%
- Abnormal pupils 52%
- Tachycardia 39%
- Abnormal doll’s eye reflex 39%
- Segmental myoclonus 32%
- Meningism 28%
- Seizures 23%
- Nystagmus 16%
- Cerebellar signs 9%

Factors associated with prognosis
Goh et al. NEJM 2000;342:1229

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>DEATH (N=30)</th>
<th>SURVIVAL (N=64)</th>
<th>P VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age — yr</td>
<td>40.9</td>
<td>35.2</td>
<td>0.02</td>
</tr>
<tr>
<td>Vomiting — no. (%)</td>
<td>12 (40)</td>
<td>13 (20)</td>
<td>0.04</td>
</tr>
<tr>
<td>Mean lowest Glasgow Coma scores</td>
<td>6.8</td>
<td>12.8</td>
<td>0.005</td>
</tr>
<tr>
<td>Segmental myoclonus — no. (%)</td>
<td>26 (87)</td>
<td>10 (16)</td>
<td><0.001</td>
</tr>
<tr>
<td>Abnormal doll’s eye reflex — no. (%)</td>
<td>25 (82)</td>
<td>15 (23)</td>
<td><0.001</td>
</tr>
<tr>
<td>Abnormal pupils — no. (%)</td>
<td>29 (97)</td>
<td>20 (31)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension — no. (%)</td>
<td>23 (77)</td>
<td>14 (22)</td>
<td><0.01</td>
</tr>
<tr>
<td>Tachycardia — no. (%)</td>
<td>28 (93)</td>
<td>8 (12)</td>
<td><0.001</td>
</tr>
<tr>
<td>Absent or reduced reflexes — no. (%)</td>
<td>22 (73)</td>
<td>31 (48)</td>
<td>0.02</td>
</tr>
<tr>
<td>Seizures — no. (%)</td>
<td>12 (40)</td>
<td>10 (16)</td>
<td>0.01</td>
</tr>
<tr>
<td>Mean AST level at admission — U/liter</td>
<td>87</td>
<td>34.4</td>
<td>0.051</td>
</tr>
<tr>
<td>Mean ALT level at admission — U/liter</td>
<td>54.2</td>
<td>53.6</td>
<td>0.896</td>
</tr>
<tr>
<td>Mean platelet count at admission — per mm3</td>
<td>151,000</td>
<td>197,000</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Relapsed and late-onset Nipah encephalitis

Relapsed encephalitis was seen in 15 (9%) of acute encephalitis survivors
Late-onset encephalitis was seen in 10 (3.4%) of those with previous non-encephalitic or asymptomatic Nipah infection
Mean duration from initial infection: 13 months (up to 4 ½ years)
3/25 patients had a second neurological episode

Immunohistochemistry - Nipah

Long-term neurological and functional outcome in Nipah virus infection

Of the survivors of acute Nipah infection in Bangladesh
21/22 had disabling fatigue, with medium duration of 5 months;
3 patients continued to have profound fatigue 2 years after infection
>50% of those <16 years had Behavioral abnormalities
Hendra and Nipah viruses

- History of previous outbreaks
- Reservoirs of viruses
- Clinical features in human
- **Diagnosis and Treatment**
- Transmission and Epidemiology
- Disease in horses and pigs
- Prevention and Control

Laboratory diagnosis

“BSL-4 agent”

<table>
<thead>
<tr>
<th>Sample</th>
<th>PCR</th>
<th>Isolation</th>
<th>IHC</th>
<th>Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/T Swab</td>
<td>+*</td>
<td>+*</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Urine</td>
<td>+*</td>
<td>+*</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Blood</td>
<td>+/-</td>
<td>-</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>CSF</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>Tissues</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>ND</td>
</tr>
</tbody>
</table>

* Positivity decrease when Ab appears

Treatment Potential

prophylactic/therapeutic modalities

- Ribavirin Nipah/Hendra
- Chloroquine
- Passive immunotherapy
Hendra and Nipah viruses

• History of previous outbreaks
• Reservoirs of viruses
• Clinical features in human
• Diagnosis and Treatment
• Transmission and Epidemiology
• Disease in horses and pigs
• Prevention and Control

Hendra virus: transmission

Risk of spillover from bats

Probability of spillover from any given colony depends on
• the proportion of susceptible flying foxes,
• the colony size,
• the presence of infection,
plus
• the number and density of horses,
• the number and density of flying foxes,
• management of the horses,
• the virus strain/virus dose/route of infection?
Nipah virus: transmission

Cases of Encephalitis in Malaysia
September 1998 to May 1999
National Swine Surveillance

- Limited period (90 days)
- All premises sampled
 - Based on high morbidity data
 - 15 sows
 - 2 samples (at least 21 days apart)
- Abattoir sampling
- Active disease discovery
- Human case discovery
- Cull infected premises

Results of Phase II Nat. Swine Surveillance

A total of 889 farms were tested

50 farms were found to have evidence of Nipah infection by the prearranged criteria

Farms culled

Epidemiology Nipah Malaysia

- Spread
 - Movement of infected swine
- Transmission in swine:
 - Very transmissible in modern husbandry setting: crowding
 - Virus maintenance in swine
 - Continuous transmission?
 - Persistent infections?
Investigations Nipah Malaysia

- Risk factors:
 - Direct live infected pig contact
 - Non-encephalitic/non-clinical infections
 - Virus molecular epidemiology
 - Pigs and human cases: identical sequence
 - Nosocomial infections? No
 - Natural reservoir?
 - Other species:
 - Dogs, cats, horses: but non-spreading
 - Rodents, birds, insectivores: none or very low

Risk factors & transmission of Nipah in Bangladesh

<table>
<thead>
<tr>
<th>Year</th>
<th>Districts</th>
<th>Transmission and risk factors</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Meherpur</td>
<td>Caring or living with a case</td>
<td>OR 7.6; 95% CI 2.2-27.7</td>
</tr>
<tr>
<td>2003</td>
<td>Naogaon</td>
<td>Close proximity with pig herds</td>
<td>OR 6.1; 95% CI 1.4-25.3</td>
</tr>
<tr>
<td>2004</td>
<td>Rajshahi</td>
<td>Climbing trees</td>
<td>OR 8.2; 95% CI 1.3-52.8</td>
</tr>
<tr>
<td>2008</td>
<td>Faridpur</td>
<td>Touching a Nipah patient</td>
<td>RR 15.0, 95% CI 4.6, 55</td>
</tr>
<tr>
<td>2005</td>
<td>Tangail</td>
<td>Drinking raw date palm juice</td>
<td>OR 7.0, 95% CI 1.6-31, p<0.01</td>
</tr>
<tr>
<td>2007</td>
<td>Thakurgaon</td>
<td>Remaining in the same room with</td>
<td>OR 87.6, 95% CI 4.4-7.44</td>
</tr>
<tr>
<td>2007</td>
<td>Kuribari</td>
<td>Person to person</td>
<td>p<0.05</td>
</tr>
<tr>
<td>2008</td>
<td>Manikganj</td>
<td>Drinking raw date palm juice</td>
<td>Adjusted OR 18, 95% CI</td>
</tr>
<tr>
<td></td>
<td>and Rajbari</td>
<td>and Rajbari</td>
<td>2.2 = x, p<0.005</td>
</tr>
</tbody>
</table>

Bangladesh Epidemiology

- Person-to-person transmission
 - 5 of 11 clusters, involved ranging from 1 to 5 generations
 - Study conducted to reduce the risk of Nipah virus transmission
 - Nipah virus isolated from saliva and urine
 - Nipah infection associated with close contact of patients
 - Handwashing is protective
- Superspreaders
 - Palm sap transmission
 - Epidemiology date palm sap collection
 - Explore spraying techniques to interrupt bats in processing date palm sap
Hendra and Nipah viruses

- History of previous outbreaks
- Reservoirs of viruses
- Clinical features in human
- Diagnosis and Treatment
- Transmission and Epidemiology
- Disease in horses and pigs
- Prevention and Control

Hendra disease in horses

Respiratory HeV
- Peracute or acute illness
- Frothy nasal discharge
- Facial oedema
- Body temperature > 40 C
- Elevated heart rate (>90 beats/minute)

Neurological HeV (seen recently in Australia)
- Mild focal neurological signs, including muscle twitching
- Ataxia
- Head tilt, facial nerve paralysis
- Elevated body temperature
- Neurological signs may resolve

Nipah disease in swine

- Febrile respiratory disease predominates
- Labored or forced breathing
- “One-mile” cough
- CNS disease much rarer than in man
- Sudden death/neurological disease in sows and boars, some abortions reported
- Mortality 1-3%, morbidity ~100%
- Post-mortem changes primarily in lung, some CNS
Hendra and Nipah viruses

- History of previous outbreaks
- Reservoirs of viruses
- Clinical features in human
- Diagnosis and Treatment
- Transmission and Epidemiology
- Disease in horses and pigs
- Prevention and Control

1. Control in domestic animals

- Routine cleaning & disinfection of pig farm/horse stable is expected to be effective in preventing infection
- Reducing the risk of bat-to-domestic animal transmission: bat proof buildings, bat exclusion strategy, fruit tree removal...
- Outbreak suspected: Quarantine animal premises ± euthanasia or culling of infected animal(s) Restrict/ ban animals movements
- Establish active animal health surveillance system for early warning for veterinary and human public health authorities.

2. Reducing risk of infection in people

- Reduce risk of bats-to-human transmission: Protect collection process of date palm juice (bamboo) Wash & peel fruits thoroughly
- Reduce risk of human-to-human transmission: Avoid or minimize physical contact with ill patient Hand hygiene + use of personal protective equipment (PPE)
- Reduce risk of domestic animal-to-human transmission: Avoid or minimize contact with ill or dead pig, horse Hand hygiene + use of personal protective equipment (PPE) Particularly important in veterinary practices (caries, necropsies)
Social Mobilization and Communication

- Prevention: what should be the key messages:
 - Exposure to bats
 - Exposure to sick animals
 - Home care
 - Funerals?
- Guidelines/trainings for specialized categories
 - Health care workers
 - Veterinarians
 - Farmers
 - Wildlife experts