Yeast and Mould Infections in Neutropenic Patients and HSCT Recipients

Kieren A. Marr MD
Professor of Medicine and Oncology
Director, Transplant and Oncology ID
Johns Hopkins University School of Medicine

Issues
- Diseases
- Current epidemiology of infection
 - Incidence and Outcomes
- Diagnosis
- Therapies

Time line, and incidence of OI's changed with preventative therapy and type of BMT.
Diseases

- Candidemia
- Deep-tissue infection
 - Acute invasive candidiasis
 - Abcess formation in the presence of hematogenous spread
 - Multiple organs may be involved
 - Endocarditis
 - Abscesses
 - Chorioretinitis
 - 30-40% attributable mortality

Hepatosplenic Candidiasis

- Neutropenic - HSCT
- Typically does NOT present during neutropenia, although may develop
- Mucosal breakdown with invasion into portal vasculature
 - Clinical presentation largely secondary to inflammatory response to lesions
 - After engraftment: abdominal pain, increased LFTs (alk phosph), fever, leg / flank pain (?)
- Diagnosis may require invasive procedure
 - Differential: other fungi, bacteria, lymphoma
- Radiographic changes may get worse before better
- *C. albicans* most common (hyphal formation)

Distribution of *Candida* species: U.S. Hospitals

- *C. albicans* 53.8%
- *C. glabrata* 13.8%
- *C. parapsilosis* 11.4%
- *C. tropicalis* 11.4%
- *C. krusei* 2.4%
- Other 2.5%

N= 1890; 1995-2002
Mould Infections: Primary Pulmonary Disease

- Nodule +/- halo: typical presentation in neutropenic; evolves to cavitation
- More variability in non-neutropenic patients
 - Nodular disease
 - Bronchopneumonia
- Multiple microbial causes of disease
 - Aspergillus species
 - Zygomycetes
 - Other filamentous organisms

From: Marchetti and Calandra, Cohen and Powderly 2nd ed (in press)

Angioinvasion

- Multiple organisms disseminate to skin, brain, liver
- Differentiate syndromes caused by organisms that "sporulate" in vivo

From: Marchetti and Calandra, Cohen and Powderly 2nd ed (in press)

Diseases Caused by Aspergillus species

- Invasive pulmonary aspergillosis
- Genus Aspergillus > 250 different species
- A. fumigatus historically considered to be most common cause of disease

Aspergillus fumigatus “group”

- Isolates identified as *A. fumigatus* are heterogeneous—small phenotypic differences
- Different species suggested by polyphasic taxonomy definition
 - Multiple closely related and “new” species
 - *Aspergillus lentulus*
 - *Aspergillus fumisynnematus*
 - *Aspergillus udagawae*
 - *Neosartorya pseudofischeri*
 - Variable susceptibilities to antifungal drugs in vitro

Other Sections

- *Aspergillus ustus*
 - *A. ustus*
 - *A. pseudodeflectus*
 - *A. calidoustus*
 - High MICs to AmB, all azoles
- *Aspergillus terreus*
 - *A. terreus*
 - *A. alabamensis*
 - High MICs to AmB

Epidemiology Update: Multicenter Surveillance Networks

- **TRANSNET**
 - 23 US centers, 2001 - 2006
 - SOT, HCT, with denominator data
- **PATH Alliance**
 - Diagnosed in hospital
PATH Alliance: BMT
- IA most frequent (n=148, 59%) of 250 IFIs identified
 - Median 82 days after HCT (3-6542)
- IC (n=62, 25%)
 - Autologous 28 days (6-1559); allogeneic 108 days (0 – 2219)

Better outcomes of IA
- Variable identification by center
 - 2 centers reported 62.8% of IA

TRANSNET
- 23 US centers, 2001 - 2006
- 12-month CI / 100 transplant
 - 1.2 (autologous) – 8.1 (MM-URD allo)

References:
- Kontoyiannis et al. Clin Infect Dis, in press
TRANSNET BMT

Kontoyiannis et al. Clin Infect Dis, in press

25% survival after IA

Take-home points

- Variable incidence of IFI—especially IA, even within transplant types reported across centers
 - Diagnostic differences
 - Differences in follow up of transplant recipients
 - Variable case - mix
 - Type of transplants performed across centers
 - Type of patients, regimens within transplant types

Take-home points

- Variable incidence, even within transplant types reported across centers
- Better outcomes of IA compared to prior years
 - Historical death rates reported 60–80% 3 mo. - 1 year
Outcomes

- Cohort: >400 transplants in Seattle 1990 – 2004
- Outcomes improved
 - Type of transplant
 - Conditioning regimen, stem cell source
 - Underlying organ function
 - Changes in diagnosis and therapy

Diagnosis

- Culture improved, but still insensitive
- Numerous patients die with post-mortem diagnoses
- Movement in the field towards non-culture based platforms for both Candida and filamentous organisms

Diagnostic tests relying on identification of (1-3)-β-D-Glucan

- Activates Limulus amebocyte lysate
- Factor G initiates cascade. Output measured by
 - Turbidity after gel clot: WB003 (Wako Pure Chem. Indus.)
 - Chromogenic substrate: Fungitec G test (Seikagaku) and Fungitell, (Assoc. Cape Cod)

\[
\text{Endotoxin} \downarrow \text{Factor C} \rightarrow \text{Activated Fact. C} \rightarrow \text{Activated Fact. G} \rightarrow \text{Factor G} \rightarrow \text{Clotting Enzyme}
\]

\[
\text{Activates Limulus amebocyte lysate} \text{ \rightarrow (1-3)-β-D-glucan}
\]

\[
\text{Factor B} \rightarrow \text{Activated Fact. B} \rightarrow \text{Coagulin (gel)} \text{ \rightarrow Chromogenic method}
\]
(1-3)-β-D-Glucan Detection

- 279 patients with variable diagnoses
 - Case control design with variable control groups

Galactomannan

- Linear core of mannan with α1,2 and α1,6 linkages
- Antigenic side chain of β1,5 galactofuranosyl target of EbA2 Ab
 - Double sandwich ELISA

Mennen-Kersten et al Lancet Infect Dis 2004 4 349

Table 2: Five-year summary of published studies investigating performance of the galactomannan EIA used for diagnosis of aspergillosis

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Sample size</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marrero et al (2005)</td>
<td>Hematopoietic malignancies</td>
<td>100</td>
<td>99.9</td>
<td>99.9</td>
</tr>
</tbody>
</table>

NOTE: HCT hematopoietic cell transplantation, NA not available
* Denotes number of samples, not number of patients

Marr and Leisenring Clin Infect Dis 2005; 41:S381
BAL studies

- HCT: Case (n=50) control (n=50)
 - Galactomannan sensitivity in culture-positive BAL fluid: 89%
 - Sensitivity in culture-negative BAL fluid (proven disease): 59%
 - False positives in 6% of samples tested
- 99 hematology patients
 - AUC ROC = 0.93

Antifungals: Candidemia

Sites of Action of Systemic Antifungal Agents

Cell membrane
- Polymers: Amphotericin B, Lipid formulations of amphotericin B, Nystatin

DNA
- Antimetabolites: 5-fluorocytosine

Cell wall
- Echinocandins: Caspofungin, Micafungin, Anidulafungin
- Hydantoin
- Cytoplasm
- Azoles: Fluconazole, Ketoconazole, Itraconazole, Voriconazole, Posaconazole

Echinocandins

Fungal Cell Wall

GTP
UDP
Glucose
Catalytic subunit
Regulatory subunit (GTPase)
Continuous fibrils of Glucan
Surface-Layer Mannoprotein
β1-6 Tail
β1-6 Branched Glucan
Entrapped Mannoprotein
Chitin
Plasma Membrane
Glycosyl Phosphatidylinositol (GPI) Anchor (to mannoproteins)
β (1,3) Glucan Synthase Enzyme Complex
Non-competitive inhibition by: Lipopeptide Class of Antifungals (Echinocandins, Pneumocandins, Papulacandins)
Antifungals: Filamentous Fungal Infections

Cell wall
- Echinocandins: Caspofungin, Micafungin, Anidulafungin

Cytoplasm
- Azoles: Fluconazole, Ketoconazole, Itraconazole, Voriconazole, Posaconazole

DNA
- Antimetabolites: 5-Fluorocytosine

Cell membrane
- Polyenes: Amphotericin B, Lipid formulations of amphotericin B, Nystatin

Voriconazole
- Voriconazole vs. AmB-d
 - Global, randomized, double-blind trial: Primary therapy of IA
 - Voriconazole = better responses, better survival
 - Voriconazole issues: dosing, need for therapeutic level monitoring

Prophylaxis in allogeneic HSCT
- Voriconazole vs. fluconazole
 - No difference in fungal free survival
 - Fewer IFI

Efficacy of Liposomal AmB (L-AmB) in Invasive Mycoses: AmBiLoad Trial

- 14-day loading dose of L-AmB 3 or 10 mg/kg/d followed by L-AmB 3 mg/kg/d
- IPA: 96% vs. 97%; CT Halo: 58% vs. 60%; Allo-SCT: 16% vs. 19%
- Neutropenia: 71% vs. 76%
- Survival: 72% vs. 59%
- Toxicity: 30% vs. 32%

L-AmB = liposomal amphotericin B; CR+PR = complete and partial responses; EOT = End of Therapy; IPA = invasive pulmonary aspergillosis; Allo-SCT = allogeneic stem cell transplant

Wingard et al. Amer Society Hematology 2008
Conclusions

- Fungal infections—especially filamentous organisms account for large morbidity in patients with hematologic malignancies
- Reported incidence varies
- Outcomes of IA improved in many centers
- New diagnostics, new therapies
- Many controversies