Bacterial Infections in Neutropenic Patients and HSCT Recipients

Kieren A. Marr MD
Professor of Medicine and Oncology
Director, Transplant and Oncology ID
Johns Hopkins University School of Medicine

Outline

- Risks: changes in therapy
- Bacterial Infections: update in a select population
 - Overall epidemiology
 - Gram – negative bacteria
 - Gram – positive bacteria
 - Clostridium difficile disease
 - Risks: new developments
- NOT discussed: empirical treatment

Course of BMT

- Conditioning therapy
 - Spectrum: myeloablative to non-myeloablative
 - reduced toxicities
 - Infusion of stem cells
 - Self origin: Autologous
 - Other: Allogeneic
 - HLA match important
 - Source of stem cells
 - Peripheral blood, marrow, cord blood
 - Manipulation of stem cell product:
 - CD34-selected, T cell depleted
- Infection risks
 - Periods of immune impairment:
 - Neutropenia (early)
 - T cell (late)
 - GI tract mucositis
 - GVHD and therapy
 - Intravascular lines
Time line, and incidence of OIs changed with preventative therapy and type of BMT.

Non-myeloablative

- Different conditioning regimens
- Much less neutropenia and early mucositis
- GVHD encouraged (Graft vs. Malignancy effect)
- Infection risks associated with
 - GVHD and therapy
 - Long-term intravascular access
- Infections predominate LATE after BMT

<table>
<thead>
<tr>
<th>Rank</th>
<th>Pathogen</th>
<th>BSU %</th>
<th>% BSI Total (%)</th>
<th>% BSI ICU (%)</th>
<th>% BSI Non-ICU (%)</th>
<th>% Crude Mortality Total (%)</th>
<th>% Crude Mortality ICU (%)</th>
<th>% Crude Mortality Non-ICU (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CoNS</td>
<td>15.0</td>
<td>31.3</td>
<td>35.9</td>
<td>26.6</td>
<td>26.7</td>
<td>25.7</td>
<td>13.8</td>
</tr>
<tr>
<td>2</td>
<td>S. aureus</td>
<td>10.3</td>
<td>20.2</td>
<td>18.8</td>
<td>23.7</td>
<td>25.4</td>
<td>34.4</td>
<td>18.9</td>
</tr>
<tr>
<td>3</td>
<td>Enterococcus</td>
<td>6.8</td>
<td>9.4</td>
<td>9.5</td>
<td>9.5</td>
<td>33.9</td>
<td>43.0</td>
<td>24.0</td>
</tr>
<tr>
<td>4</td>
<td>Candida spp.</td>
<td>4.6</td>
<td>9.0</td>
<td>18.1</td>
<td>7.9</td>
<td>38.2</td>
<td>47.1</td>
<td>29.0</td>
</tr>
<tr>
<td>5</td>
<td>S. flexneri</td>
<td>2.8</td>
<td>3.6</td>
<td>3.7</td>
<td>7.6</td>
<td>22.4</td>
<td>33.9</td>
<td>16.9</td>
</tr>
<tr>
<td>6</td>
<td>Klebsiella spp.</td>
<td>2.4</td>
<td>4.6</td>
<td>4.9</td>
<td>5.5</td>
<td>27.4</td>
<td>37.4</td>
<td>20.3</td>
</tr>
<tr>
<td>7</td>
<td>P. aeruginosa</td>
<td>1.1</td>
<td>4.3</td>
<td>4.7</td>
<td>3.8</td>
<td>18.7</td>
<td>47.6</td>
<td>27.6</td>
</tr>
<tr>
<td>8</td>
<td>Enterobacter</td>
<td>1.5</td>
<td>3.9</td>
<td>4.7</td>
<td>3.1</td>
<td>24.7</td>
<td>32.5</td>
<td>16.0</td>
</tr>
<tr>
<td>9</td>
<td>Stenotrophomonas</td>
<td>0.9</td>
<td>1.7</td>
<td>2.1</td>
<td>1.3</td>
<td>27.4</td>
<td>33.9</td>
<td>17.1</td>
</tr>
<tr>
<td>10</td>
<td>A. baumannii</td>
<td>0.6</td>
<td>1.2</td>
<td>1.6</td>
<td>0.9</td>
<td>24.8</td>
<td>45.4</td>
<td>16.2</td>
</tr>
</tbody>
</table>

Bacterial Infections: Hematology

- Population-based studies don’t tell whole story
 - Changes over time
 - Evolving epidemiology based on differences in host, differences in supportive care

- Time-dependent changes:
 - Decrease in gram-negative bacteremias during 1990's
 - Rebound increase in Gram - neg: Resistance
 - Increased problems with gram+

Prophylaxis

- Highly 'pre-treated' population
- Multiple studies have shown better outcomes with some antibacterial prophylaxis
 - β-lactams
 - Quinolones
 - Decreased fever, bacteremias
 - But increased breakthrough resistance

- Practices change epidemiology in institutional-host dependent fashion

Bacteremia

- European Organization for Research and Treatment of Cancer
 - 1970's: gram-negative bacteria caused 70% of bloodstream infections, 40% mortality
 - 1980's: gram positive bacteria caused 70%, gram negative 30% ¹
 - Resistance in Strept: β-lactam, carbapenem
 - Pseudomonas high mortality 40%

- University of Florida: 519 BMT ²
 - 29.5% patients developed bacterial infection
 - Incidence decreased 1991 to 1997
 - Decreased in Streptococci and Staphylococci
 - Resistance in Strept: β-lactam, carbapenem

1 Eur J Cancer 26: 569-74 (1990)
13 centers in Brazil: March – Nov 2004
- Day 0 until engraftment or death
- Resistance to 2 drug classes: MDR
- 411 pts: prophylaxis 34% (β-lactam, quin)
- Bacteremia 91 (27%)
 + 47% gram-positive, 37% gram-negative
 + 37% of gram-negative bacteria MDR
 - K. pneumoniae, P. aeruginosa, Enterobacter spp., E. coli, B. cepacia, S. maltophilia, Acinetobacter spp., C. freundii
- Risks: 3rd generation cephalosporins, clustering in hospitals

Empirical therapy considerations

Most common cause of bacterial pneumonia before day 100

- FHCRC review (1990 – 2001)
 - 95 / 5772 patients (1.65%)
 - 2% allogeneic, 1% autologous
 - 63 days after HCT (5-1435)
 - Bulk during GVHD; 28% during neutropenia
- Copathogens common: 48% (IFI, CMV, polymicrobial bacterial infection)
- 16% developed recurrent disease after 2 weeks of antibiotics (mortality 60%): GVHD
- Longer therapy should be considered
Stenotrophomonas maltophilia

- Resistance to carbapenems
- Bloodstream infection, pneumonia
- Poor outcomes\(^1\)
- Risks in case-control study at Barnes Jewish Hospital \(^2\)
 - Mucositis, diarrhea, metronidazole, many antibiotics used

2 Apisarnthanarak et al. Infect Control and Hosp Epid 2003; 24: 269-74

Acinetobacter baumannii

- Natural habitat water and soil, hot and humid climates
 - Nosocomial: burns, wounds, pneumonia
 - Outbreaks in hospitals and facilities
 - Multidrug resistance

Acinetobacter baumannii

- Neutropenia = risk for death
- Not simply related to drug resistance
 - Underlying disease severity, toxicities

Kremery and Kalavsky Emer ID 13(6) 2007
Classically, hospital-associated MRSA relatively low incidence in hematologic population, in absence of outbreak.

- Single UK HCT center: 41/776 (5%); 9% in unrelated donor allogeneic HCT
 - Increased during outbreak in 2004
- Colonization and persistent carriage risk factor for infection

1 Shaw et al. Bone Marrow Transplant 2007; 39: 623-29

1994 – 1996 DUMC

- 430 – MSSA / MRSA bacteremia
 - 122 (28%) cancer
 - 52 non-neutropenic
 * Device-related: 42%
 * Tissue infection: 44%
 * Unidentified focus: 13%
 * IE: 15%
 - MRSA 20 patients (38%)

High-virulence "community-acquired" MRSA causing hospital infection

- Skin, soft tissue infection in healthy people, bloodstream infection, necrotizing pneumonia, abscess formation
- Into the hospital-colonization pre-therapy

Vancomycin Resistant Enterococcus

- 281 HCT recipients at Cleveland Clinic: 1997 - 2003
 - Early VRE infection in 2.6% patients, poor outcomes
- Leukemia / HCT at Barnes Jewish (1996 - 2002)
 - Incidence bloodstream 0.6 - 2.1 / 1000 patient days
 - Dependent on infection control (gowns)
 - 334 patients colonized: 13% BSI
 - 70% infected were colonized prior
 - 78% hospitalized in prior 30 days
 - Survival poor: GVHD, pneumonia, antifungals, high APACHE II

Active surveillance study at University of Chicago HCT unit:
- Sequential cultures upon admission
- Prevalence rate: 11.2% current BMT, 67.3% previous HCT, 24% nontransplant
- Risk for conversion: voriconazole, trimethoprim-sulfamethoxazole, carbapenem, URD HCT

Question

- 42 yr old M with AML 12 days after therapy with mucositis, neutropenia 12 days, fever for 6 days
 - Levofoxacin prophylaxis- ceftaziidime empirically, added vancomycin (1 day)
- Gram-positive coccus in blood culture
- After 24 hours, patient became hypotensive and developed ARDS, and a diffuse erythematous rash
- Which organism is the most likely etiology?
 1. Streptococcus pneumoniae
 2. Coagulase-negative Staphylococcus
 3. Enterococcus faecalis
 4. Streptococcus mitis
 5. Stomatococcus mucilaginosus
Viridans Streptococci

- Important cause of bacteremia in neutropenic cancer patients
- Risk factors: severe neutropenia, oral mucositis, high-dose cytosine arabinoside, antimicrobial prophylaxis with TMP-SMX or a fluoroquinolone
- Can present with fever, flushing, chills, stomatitis, pharyngitis
- After 24-48 hours, hypotension in 1/3 of cases
- Rash, shock, ARDS in 1/4 of cases (similar to toxic shock)
- Endocarditis unusual (<10%)
- Mortality high (15-20%)

Gi Infections

- Diarrhea is a common complaint
 - Most non-infectious
 - Tips for infections
 - Bloody, fever, abdominal pain
- Colitis
 - Neutropenic enterocolitis
 - *C. difficile* colitis
 - CMV, other Herpes viruses (not common)

Streptococci

- *S. pneumoniae*
 - MD Anderson
 - 1989 – 2005: incidence 7/1000 HCT
 - Late complication: median 443 days
 - Lymphoma, steroids risks
 - 347 / 100,000 person yrs (vs. 11.5 / 100,000 in general population)
 - Serotypes would be protected in vaccine (not given)
 - High rates of Tm/Sf resistance
 - Allogeneic HSCT: timing of vaccination

2 Youssef et al. Medicine 2007 86(2): 69-77
3 Kumar et al. Bone Marrow Transplant 2008 41: 743-47
Clostridium difficile disease

- Little data in HCT or neutropenic population
- 119 patients (auto, allo) – 7 / 109 (6%) CDAD
- Incidence subsequent to toxigenic strain (NAP-1) likely increased
 - Multiple risks predict problem
 - Quinolone resistance
 - Antibiotic-induced changes in flora
 - Low humoral immune response to circulating toxin A (IgG)

1 Tomblyn et al. Bone Marrow Transplant 2002 30: 517-19

C. difficile disease

- Risks for CDAD ↑ neutropenia, HSCT
 - Incidence, risks unknown
 - Certain drugs may potentiate risks
- Autologous PBSCT (n=242, 1996-2001)1
 - Incidence 15%
 - Risks: cephs, vanco
 - Paclitaxel with mobilization: lower incidence
- 2003-2004 case-control2
 - Incidence cancer floor 2.4/1,000 pt-days
 - Cases: older; lung cancer (3x) antibiotics 22x higher (cephalosporins); IL-2 7x
- Recent small retrospective study3:
 - 1st allogeneic HSCT 2003-2007 (n=26)
 - 88.5% had diarrhea
 - 30% had CDAD diagnosed (n=7)
 - AML (n=6); imipenem

1 Arango et al. BMT 2006 37, 517-521

Neutropenic Enterocolitis

- Neutropenic enterocolitis (typhilitis)
 - Necrotizing inflammation with transmural infection of damaged bowel wall
 - Mixed infection with gram-negative, gram-positive, anaerobic bacteria
 - Can be accompanied by bacteremia
 - Mixed, Anaerobic (C. septicum, C. tertium, B. cereus)
 - Medical and surgical management

Cornely Lancet 358:9296 (2001)
Risks for bacterial infection

- Neutropenia, mucositis, intravascular catheters
 - Different risks associated with conditioning

- Genetic risks
 - HLA-matched siblings (Korea)¹
 - Polymorphism in P2X7 receptor: plasma membrane R for ATP involved in IL-1 processing
 - Associated with survival, bacteremia
 - FHCRC: case-control study alloHCT
 - Polymorphism in LPS binding protein (promoter) associated with gram-negative bacteremia and mortality
 - Paris: non-T depleted (n=192)
 - Polymorphism in PTPN22 gene (protein tyrosine phosphatase): negative regulator of T cell activation
 - Polymorphism 2q21.3 (lactase phlorizin hydrolase) associated with pneumonia, TRM¹

Conclusions

- Epidemiology
 - Always evolving
 - Institutional infection control issues
 - Additional pressures (prevention)

- Issues of great concern
 - Resistance (both gram – and +)
 - Some practices should differ
 - Longer course therapies for *P. aeruginosa* pneumonia
 - CDAD not well understood
 - Risks and outcomes, factors that dictate recurrence

- New understanding of infectious risks

¹ Lee et al. Haematologica 2007; 92(5)
² Chen et al. Blood 2008; 111: 2462-69
³ Azarian et al. Transplantation 2008; 85: 1859-62