Bacterial Infections in Neutropenic Patients and HSCT Recipients

Kieren A. Marr MD
Professor of Medicine and Oncology
Director, Transplant and Oncology ID
Johns Hopkins University School of Medicine

Outline

- Risks- changes in therapy
- ■Bacterial Infections: update in a select population
- -Overall epidemiology
- -Gram negative bacteria
- -Gram positive bacteria
- Clostridium difficile disease
- -Risks: new developments
- ■NOT discussed: empirical treatment

Course of BMT

- Conditioning therapy
 - Spectrum: myeloablative to non-myeloablative
 reduced toxicities
- Infusion of stem cells
- Self origin: Autologous
- Other: Allogeneic
- HLA match important
- Source of stem cells
- Peripheral blood, marrow, cord blood
- Manipulation of stem cell product
 CD34-selected, T cell depleted
- Infection risks
 - Periods of immune impairment
 - Neutropenia (early)
 - T cell (late)
 - GI tract mucositis
 - GVHD and therapy
 - Intravascular lines

			% BSI			% Crude Mortality		
Rank	Pathogen	BSI per 10,000 admissions	Total (n=20,978)	ICU (n=10,515)	Non-ICU (n=10,515)	Total	ICU	Non-ICU
1.	CoNS	15.8	31.3	35.9	26.6	20.7	25.7	13.8
2.	S. aureus	10.3	20.2	16.8	23.7	25.4	34.4	18.9
3.	Enterococcus spp.	4.8	9.4	9.8	9.0	33.9	43.0	24.0
4.	Candida spp.	4.6	9.0	10.1	7.9	39.2	47.1	29.0
5.	E. coli	2.8	5.6	3.7	7.6	22.4	33.9	16.9
6.	Klebsiella spp.	2.4	4.8	4.0	5.5	27.6	37.4	20.3
7.	P. aeruginosa	2.1	4.3	4.7	3.8	38.7	47.9	27.6
8.	Enterobacter spp.	1.9	3.9	4.7	3.1	26.7	32.5	18.0
9.	Serratia spp.	0.9	1.7	2.1	1.3	27.4	33.9	17.1
10.	A. baumannii	0.6	1.3	1.6	0.9	34.0	43.4	16.3

Bacterial Infections: Hematology

- Population based studies don't tell whole story
- -Changes over time
- Evolving epidemiology based on differences in host, differences in supportive care
- Time-dependent changes:
- Decrease in gram-negative bacteremias during 1990's
- Rebound increase in Gram neg:
 Resistance
- Increased problems with gram+ Resistance

Prophylaxis

- Highly 'pre-treated' population
- Multiple studies have shown better outcomes with some antibacterial prophylaxis
 - -β-lactams
- -Quinolones
- Decreased fever, bacteremias
- But increased breakthrough resistance
- Practices change epidemiology in institutional- host dependent fashion

Bacteremia

- European Organization for Research and Treatment of Cancer
 - 1970's: gram-negative bacteria caused 70% of bloodstream infections, 40% mortality
- 1980's: gram positive bacteria caused 70%, gram negative 30% $^{\rm 1}$
- University of Florida: 519 BMT ²
- $-\,29.5\%$ patients developed bacterial infection
- Incidence decreased 1991 to 1997
- Decreased in Streptococci and Staphylococci
- Resistance in Strept: β-lactam, carbapenem
- Pseudomonas high mortality 40%

90 90 70	_				_	■Gram DGram	positive regative
50 40 30 20 10	h	h	h	h	h	h	h
ő	91	92	93	54	96	96	97

¹ Eur J Cancer 26: 569-74 (1990) ² Collin et al. Clin Infect Dis 2001; 33: 947-53

Organism and Antibiotic		Secont, Resurrected, and Future Antimicrol
Organism and Antibiotic Resistance	Common Mechanism of Hesistance	Agents with Potential Clinical Use
Hospital associated MRSAT		
Vancomycin (Both VISA and VISA)	Thickering of cell will (not fully elicidated); change in the last amine acid of peptido- glycan pricursors.	Lineaulid, quimagristin-dalfopristin, dapterny sin, tigocycline, cellobiprole, cellaroline, dalbovancin, televancin, oritavancin, iclamin
Daptomycin	Associated with changes in cell wall and cell membrane (not fully elucidated)	Linezolid, quimpristin-daffopristin, tigecy- cline, ceffobiprole, ceffaniline, dafbavancir telavancin, oritavancin, iclaprim
Linezolid	Mutations in the 235 ribosomal RNA genes: rarely, acquisition of a methyltransferase gene ((9))	Dagtomycin, quinupriatin-dalfopriatin, tigecy cline, ceffobiprele, ceffamiline, da bavancir telavancin, critavancin, iclagrim
Vancerrycin-resistant Enterecocus faccium)		
Ampicillin (common)	Mutation and overexpression of php5	Linezolid, quinupristin-dalfopristin, dapterny cin, tigecycline
High-level resistance to aminoglycosides	Acquisition of arranglecaside modifying en- zymes, ribosomal mutations (streptomycin)	No alternative for a reliable bactericidal effect alone or in combination
Linezolid	Mutations in the 235 ribosomal RNA geres	Quinupratin-daffopristin, daptemycin, tigecy sline
Displaying	Unknown	Linezolid, quinopristin-dalfopristin, tigrcyclin
Quinupristin-daffopristin	Engymes that inactivate quinopristin—dalfo- pristin, target modification	Dagnomycin, linezolid, tigecycline
Escherichia coli, klebsiella spe- cies, and enserobacter species§		
Ovyimino-cephalosporins (celtrissone, celotza- ime, celtazidime, and celepime)	Extended-spectrum (8-lactamases (includes hypergroduction of the AmpC enzymes by Enterobocteriaceae family)	Carbapenents, tigecycline
Carbapererns	Production of carbapenemases, decreased permeability	Polymyeins, tigesystime
Acinetohacter species¶		
Cartispenents.	Decreased permeability, increased efflux, and production of carbapenemases	Polymywins
Pheuskiminen aerseginina ¶		
Carbapenems	Decreased permeability, increased efflux, and production of carbapenemases	Polymysins

MDR-gram negative bacteremia

- 13 centers in Brazil: March Nov 2004
- -Day 0 until engraftment or death
- -Resistance to 2 drug classes: MDR
- -411 pts: prophylaxis 34% (β-lactam, quin)
- -Bacteremia 91 (27%)
- 47% gram-positive, 37% gram-negative
- 37% of gram-negative bacteria MDR
- K. pneumoniae, P. aeruginosa, Enterobacter spp., E. coli, B. cepacia, S. maltophilia, Acinetobacter spp., C. freundii
- Risks: 3rd generation cephalosporins, clustering in hospitals

¹ Oliveira et al. BMT 2007 39; 775-781

Empirical therapy considerations

Pseudomonas aeruginosa

¹ Lossos et al Transplantation 1995 60: 672-78 ²Hakki et al. BMT 2007 39, 687-93

- Most common cause of bacterial pneumonia before day 100¹
- FHCRC review (1990 2001) ²
- -95 / 5772 patients (1.65%)
- 2% allogeneic, 1% autologous
- -63 days after HCT (5-1435)
- Bulk during GVHD; 28% during neutropenia
- -Copathogens common: 48% (IFI, CMV, polymicrobial bacterial infection)
- -16% developed recurrent disease after 2 weeks of antibiotics (mortality 60%): GVHD
- Longer therapy should be considered

Stenotrophomonas maltophilia

- Resistance to carbapenems
- Bloodstream infection, pneumonia
- Poor outcomes¹
- Risks in case-control study at Barnes Jewish Hospital ²
- Mucositis, diarrhea, metronidazole, many antibiotics used

¹ Cherif et al. Hematol J 2003; 4(6): 420-6 ² Apisarnthanarak et al. Infect Control and Hosp Epid 2003; 24: 269-74

Acinetobacter baumannii

- Natural habitat water and soil, hot and humid climates
- Nosocomial: burns, wounds, pneumonia
- -Outbreaks in hospitals and facilities
- -Multidrug resistance

Munoz-Price and Weinstein New Eng J Med 2008; 358: 1271-81

Acinetobacter baumannii

■ Neutropenia = risk for death

Table 3 Independent risk factors for in-b	copital mortality for 46 patients with Acineobacter b	houseumin bucteracmia
Risk factor	Odds ratio (95% CI)	P-value
Elevated APACHE II score ⁵	1.333 (1.076-1.452)	0.006
Neutropenia	38.211 (3.225-452.673)	0.004

- Not simply related to drug resistance
- -Underlying disease severity, toxicities

Characteristic	All patients, no. (%) (N × 27)	Patients with drug-sunceptible A baumannii, no. (%)* In = 12, 48%)	Patients with MDR A bournarrel no. (%)* in = 15, 56%
Risk for bacterersa			
Central venous catheter	19 (70.4)	9 (75.0)	10 (66.7)
Acute leukerras	11 (40.7)	6.450.01	5 (33.3)
Previous prophytavis with			
quinciones	34 (51.9)	8 (96.7)	6 (40.0)
Previous therapeutic treatment			
with cephalosporins	15 (55 fb)	6 (96.7)	7 (40.7)
Previous therapeutic treatment			
with cartiapenems	8 (29.4)	4 (33.3)	4 (26.7)
Outcome			
Septic shock	4 (14.8)	2 (16.7)	2 (13.3)
Death	2 (7.4)	1 (0.3)	1.61.7)

Choi et al. Intern Med J 2005; 35: 599-603 Krcmery and Kalavasky Emer ID 13(6) 2007

MRSA

- Classically, hospital associated MRSA relatively low incidence in hematologic population, in absence of outbreak
- Single UK HCT center: 41/776 (5%); 9% in unrelated donor allogeneic HCT -Increased during outbreak in 2004
- Colonization and persistent carriage risk factor for infection ²

¹ Shaw et al. Bone Marrow Transplant 2007; 39: 623-29 ² Kato et al. Ann Hematol 2003 82: 310-12

S. aureus

- 1994 1996 DUMC
- 430 MSSA / MRSA bacteremia
- -122 (28%) cancer
- -52 non-neutropenic
- Device-related: 42%
- Tissue infection: 44%
- Unidentified focus: 13%
- IE: 15%
- -MRSA 20 patients (38%)

gopal et al. J Clin Oncol 2000

MRSA: Issues

- High-virulence "communityacquired" MRSA causing hospital infection
- Skin, soft tissue infection in healthy people, bloodstream infection, necrotizing pneumonia, abscess formation
- Into the hospitalcolonization pre-therapy

Arias and Murray New Eng J Med 2009; 360(5) 439-43

-	

Vancomycin Resistant Enterococcus

¹ Avery et al. Bone Marrow Transplant 2005: 35: 497-99 ² Dubberke et al. Bone Marrow Transplant 2006: 38: 813-19

- 281 HCT recipients at Cleveland Clinic: 1997 2003¹
- Early VRE infection in 2.6% patients, poor outcomes
- Leukemia / HCT at Barnes Jewish (1996 2002)²
 - Incidence bloodstream 0.6 2.1 / 1000 patient days
- Dependent on infection control (gowns)
- -334 patients colonized: 13% BSI
- 70% infected were colonized prior78% hospitalized in prior 30 days
- -Survival poor: GVHD, pneumonia, antifungals, high APACHE II

Vancomycin Resistant Enterococcus

Calderwood et al. Infect Control Hosp Epi 2008 29: 1019-25

- Active surveillance study at University of Chicago HCT unit¹
 - Sequential cultures upon admission
 - Prevalence rate: 11.2% current BMT; 67.3% previous HCT, 24% nontransplant
 - Risk for conversion: voriconazole, trimethoprim-sulfamethoxazole, carbapenem, URD HCT

Question

- 42 yr old M with AML 12 days after therapy with mucositis, neutropenia 12 days, fever for 6 days
- Levofloxacin prophylaxis- ceftazidime empirically, added vancomycin (1 day)
- Gram-positive coccus in blood culture
- After 24 hours, patient became hypotensive and developed ARDS, and a diffuse erythemetous rash
- Which organism is the most likely etiology?
- 1. Streptococcus pneumoniae
- 2. Coagulase-negative Staphylococcus
- 3. Enterococcus faecalis
- 4. Streptococcus mitis
- 5. Stomatococcus mucilaginosus

_			
	 		
-			
_	 		

Viridans Streptococci Epidemiology and Clinical Presentation

- Important cause of bacteremia in neutropenic cancer patients
- Risk factors: severe neutropenia, oral mucositis, high-dose cytosine arabinoside, antimicrobial prophylaxis with TMP-SMX or a fluoroquinolone
- Can present with fever, flushing, chills, stomatitis, pharyngitis
- After 24-48 hours, hypotension in 1/3 of cases
- Rash, shock, ARDS in 1/4 of cases (similar to toxic shock)
- Endocarditis unusual (<10%)
- Mortality high (15-20%)

Streptococci

- S. pneumoniae
- -MD Anderson²
- 1989 2005: incidence 7/1000 HCT
- Late complication: median 443 days
- Lymphoma, steroids risks
- -Population-based surveillance in Toronto (1994 – 2005)³
- 347 / 100,000 person yrs (vs. 11.5 / 100,000 in general population
- Serotypes would be protected in vaccine (not given)
- High rates of Tm/Slf resistance
- -Allogeneic HSCT: timing of vaccination

¹ Prabhu et al. Eur J Clin Microb ID 2005 24: 832-38 ² Youssef et al. Medicine 2007 86(2): 69-77 ³ Kumar et al. Bone Marrow Transplant 2008 41: 743-47

GI Infections

- Diarrhea is a common complaint
- -Most non-infectious
- -Tips for infections
- Bloody, fever, abdominal pain

■ Colitis

- -Neutropenic enterocolitis
- C. difficile colitis
- -CMV, other Herpes viruses (not common)

-	
-	

Clostridium difficile disease

- Little data in HCT or neutropenic population
- 119 patients (auto, allo) -7 / 109 (6%) CDAD ¹
- Incidence subsequent to toxigenic strain (NAP-1) likely increased
 - Multiple risks predict problem²
 - Quinolone resistance
 - Antibiotic-induced changes in flora
 - Low humoral immune response to circulating toxin A (IgG)
 - ¹ Tomblyn et al. Bone Marrow Transplant 2002 30: 517-19 ² Kelly and LaMont New Eng J Med 2008; 359: 1932-40

C. difficile disease

- Risks for CDAD ↑ neutropenia, HSCT
 - Incidence, risks unknown
 - Certain drugs may potentiate risks
- Autologous PBSCT (n=242, 1996-2001)¹
- Incidence 15%
- Risks: cephs, vanco
- Paclitaxel with mobilization: lower incidence
- 2003-2004 case-control²
- Incidence cancer floor 2.4/1,000 pt-days
- Cases: older; lung cancer (3x) antibiotics 22x higher (cephalosporins); IL-2 7x
- Recent small retrospective study³:
- 1st allogeneic HSCT 2003-2007 (n=26)
 - 88.5% had diarrhea
 - 30% had CDAD diagnosed (n=7)
 - AML (n=6); imipenem

Arango et al. BMT 2006 37, 517-521 Giffford and Kirkland. Eur J Clin Microbiol Infect Dis 2006; 25(12): 751-5 3 Leung et al. Infect Control Hosp Epid 2010 31(3): 313-15

Neutropenic Enterocolitis

- Neutropenic enterocolitis (typhlitis)
- Necrotizing inflammation with transmural infection of damaged bowel wall
- Mixed infection with gram-negative, grampositive, anaerobic bacteria
- Can be accompanied by bacteremia
 - Mixed, Anaerobic (*C. septicum*, *C. tertium*, *B. cereus*¹)
- Medical and surgical management

Ulcerative lesions Bacterial colonies in enteric mucosa and lymphatic vessels

Ginsburg et al, Amer J Hematol 72 (2003) Cornely Lancet 358:9296 (2001)

Risks for bacterial infection

¹ Lee et al. Haematologica 2007; 92(5) ² Chien et al. Blood 2008; 111: 2462-69 ³ Azarian et al. Transplantation 2008; 85: 1859-62 ⁴ Hauser et al. Blood 2008 112(5): 2156-59

- Neutropenia, mucositis, intravascular catheters

 Different risks associated with conditioning
- Genetic risks
- HLA-matched siblings (Korea)¹
 - Polymorphism in P2X7 receptor: plasma membrane R for ATP involved in IL-1 processing
 - associated with survival, bacteremia
- FHCRC: case-control study alloHCT
- Polymorphism in LPS binding protein (promoter) associated with gram-negative bacteremia and mortality
- Paris: non-T depleted (n=192)
- Polymorphism in PTPN22 gene (protein tyrosine phosphatase): negative regulator of T cell activation
- Polymorphism 2q21.3 (lactase phlorizin hydrolase) associated with pneumonia, TRM⁴

Conclusions

- Epidemiology
- -Always evolving
- Institutional infection control issues
- -Additional pressures (prevention)
- Issues of great concern
- Resistance (both gram and +)
- -Some practices should differ
- Longer course therapies for P. aeruginosa pneumonia
- -CDAD not well understood
- Risks and outcomes, factors that dictate recurrence
- New understanding of infectious risks

· ·			
	 	<u> </u>	